Adut. No. 04/2023

> D. of Exam$30109 / 2023$

INSPS/TDD/IV/23

00218
MATHEMATICS
Paper-III
Full Marks : 100
Time : 3 hours
The figures in the margin indicate full marks
for the questions
The symbols have their usual meanings
Answer any ten questions

1. If by a transformation from one set of rectangular axes to another with the same origin the expression $a x^{2}+2 h x y+b y^{2}$ changes to $a^{\prime} x^{\prime 2}+2 h^{\prime} x^{\prime} y^{\prime}+b^{\prime} y^{\prime 2}$, then prove that $a+b=a^{\prime}+b^{\prime}$ and $a b-h^{2}=a^{\prime} b^{\prime}-h^{\prime 2}$.
2. What do you mean by a cyclic group? Prove that every cyclic group is Abelian. Is the group S_{3} cyclic? Justify your answer.

$$
2+5+3=10
$$

3. (a) If p is a prime, then prove that $(p-1)!\equiv-1(\bmod p)$.
(b) Using the properties of congruences, show that 41 divides $2^{20}-1$.

4
4. (a) If z_{1} and z_{2} are two complex numbers, then prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ if and only if $\frac{z_{1}}{z_{2}}$ is purely imaginary.
(b) If $p=\cos a+i \sin a$ and $q=\cos b+i \sin b$, then show that

$$
\frac{p-q}{p+q}=i \tan \left(\frac{a-b}{2}\right)
$$

5. A particle moves from rest in a straight line under an attractive force $\frac{\mu}{(\text { distance })^{2}}$. Show that if initial distance is $2 a$, the distance will be a after the time

$$
\left[\frac{\pi}{2}+1\right]\left(\frac{a^{3}}{\mu}\right)^{\frac{1}{2}}
$$

6. Define (a) integral domain and (b) prime ideal of a commutative ring. Let R be a commutative ring with unity and A be an ideal of R. Prove that $\frac{R}{A}$ is an integral domain if and only if A is prime. $\quad 3+7=10$
7. Evaluate :
$5+5=10$
(a) $\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$
(b) $\oint_{C} \frac{z f^{\prime}(z)}{f(z)} d z$, where C is the circle $|z|=5$ and $f(z)=z^{4}-2 z^{3}+z^{2}-12 z+20$
8. Let F be the field of complex numbers and let T be a function from F^{3} into F^{3} defined by $T(x, y, z)=(x-y+2 z, 2 x+y-z,-x-2 y)$. Verify that T is linear. Describe the null space of T. Is T invertible? If possible, find $T^{-1}(x, y, z)$.
9. Show that the functions $e^{x} \cos x$ and $e^{x} \sin x$ are linearly independent. Form a differential equation of second order having these two functions as independent solutions.
10. Reduce the differential equation $y^{\prime \prime}+P y^{\prime}+Q y=R$ to normal form, hence solve-
$\left(y^{\prime \prime}+y\right) \cot x+2\left(y^{\prime}+y \tan x\right)=\sec x$.
11. Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic and find v such that $f(z)=u+i v$ is analytic.
12. Consider the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2} y}{x^{4}+y^{2}} ; & \text { if } x^{2}+y^{2} \neq 0 \\
0 ; & \text { if } x=0=y
\end{array}\right.
$$

Show that the function is discontinuous at origin, but f_{x} and f_{y} exist and are derivatives everywhere including origin.

(4)

13. The rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. Half of the original number of radioactive nuclei have undergone disintegration in a period of 1500 years.
(a) What percentage of the original radioactive nuclei will remain after 4500 years?
(b) In how many years will only one-tenth of the original number remain? (Take $\log 2=0.301)$
14. A bakery produces two types of cookieschocolate chip and caramel. The bakery anticipates daily demand for a maximum of 80 caramel cookies and 120 chocolate chip cookies. Due to a lack of raw materials and labour, the bakery can produce 120 caramel cookies and 140 chocolate chip cookies daily. For the bakery to be viable, it must sell a minimum of 240 cookies each day. Every chocolate chip cookie served generates $₹ 75$ in profit, whereas each caramel cookie generates ₹88. Using graphical method, find the solution to the number of chocolate chip and caramel cookies that the bakery must produce each day to maximize profit.
